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ABSTRACT

The simulation of 
uid 
ow and heat transport in fracture network systems requires new grid generation techniques.
A fractured subsurface domain may be regarded as a convex 3 d domain split up into convex subdomains. When it
comes to hexahedrally meshing it there is still no method which provides overall simplicity, uniqueness, and robustness,
and furthermore good mesh quality near those fracture planes as they govern the phenomena. For these cases we
propose 2.75 d meshes. The basic idea is that the regions with steady state conditions need not be considered and,
consequently they need not be meshed at all. Those regions are located far from the fractures. Accordingly, the
2.75 d mesh is a skeleton of 3 d elements covering the fracture planes in the domain. These can thus be analytically
computed as layered hexahedral elements. Pre-requisites are a topological analysis of the domain and expertise in

uid dynamics in order to properly decide about the space to be omitted.
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1. INTRODUCTION

This grid generation method has been developed to
meet the needs arising in 
uid 
ow simulations of frac-
ture network systems. The case to be treated is the
geothermal research site Soultz-sous-forêts in France
(see �gure 1 and (1)). At a depth of 3500m hot
dry granite rock at 165� was found. This domain
of about 5 km3 consists of seven main fractures in a
porous matrix. Geological analysis showed that these
fractures can be regarded as planes which are not only
highly intersecting but also often at extremely small
angles (see �gure 2). Both an injection well and an
extraction well were drilled in order to provide heated
water. Back at the surface, the water temperature of
about 140� is used to generate more than 10MWe.
For optimisation of energy production it is necessary
to fully understand the 
ow regime. This is attained
by FEM - simulations of the 
uid 
ow, of a tracer and
heat transport for which di�erent models have been
developed: a) discrete modeling, b) continuum or mul-
ticontinuum approach or c) hybrid models, see (2) and

(3) for details. Discrete as well as hybrid models re-
quire as input data the geometry of the considered
domain and its fractures. For discrete models two dif-
ferent approaches have been pursued: In the �rst ap-
proach the fractures and matrix are represented as �-
nite elements of the same dimension (equidimensional
modelling), in the second one the dimension of the
fractures` �nite elements is reduced by one omitting
the direction vertical to the fracture plane. This proce-
dure has the advantage of keeping the unknown thick-
ness of the fracture as a parameter and thus reduces
the discretization scale needed for stability and cor-
rectness of the simulations. A pre-requisite for these
simulations in fracture network systems is the hexa-
hedral FEM - grid whose generation will be discussed
subsequently.

2. OUTLINE

Generally and abstractly spoken, meshing this domain
means meshing a convex 3 d domain which is split up



Figure 1: The research side Soultz-
sous-forêts
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Figure 2: A model of the fracture network

Figure 3: Outline of the method’s idea

into convex subdomains by idealized planes. Whereas
a focus on the given case illuminates the concrete,
special features needed: The experience in 
uid sim-
ulation for fracture network systems shows that the

uid 
ow through the fractures themselves is domi-
nant while that through the adjacent rock matrix may
be neglected. For tracer or heat 
ow the processes in
the fractures are still prevailing, being in
uenced by
the rock matrix in their close vicinity only. Steady
state conditions are found in the rock matrix more
distant to the fractures. As a result of this a high
�nite element mesh quality is desired especially near
the fractures. In other words: far from the fractures
an excellent mesh quality of even a mesh is not neces-
sarily needed. Omitting the inside of all subdomains
reduces the mesh to a skeleton of hexahedra covering
the fracture planes. This o�ers a possibility for sim-
plifying and accelerating the simulation. The amount
of mesh that may be omitted solely depends on the
physical properties of the rock matrix and the 
uid:
the transmissibility, the heat conductivity, and there-
fore the porosity.

The focus on the given case raises one last question:
how can the numerical stability be increased for those
�nite elements of the rock matrix containing consti-

tutionally small angles? Those fractures that inter-
sect under an exceedingly small angle produce an ex-
tended zone of intermediate porosity. This porosity
is attributed to all of the elements close to the inter-
section line. In doing so, on the one hand, a more
realistic physical model is obtained, and on the other
hand the numerical stability of these less well shaped
elements is improved. Besides these two features sim-
plicity, uniqueness, and robustness are required.

A closer look at the available hexahedral meshing
methods shows: the advancing front method and its
family for 3 d hexahedral meshing do not provide
uniqueness and su�er from a lack of closure proce-
dures. Blocking methods are not recommended due to
the manual e�ort needed. Finally, tetrahedral mesh-
ing followed by hexahedration (see (4)) cannot improve
the mesh quality generated by the triangulation, but
ful�lls the other requirements stated above. Thus it
can be taken as the starting point for the development
of the new mesh generator.

In order to ensure numerical stability and to generate
better numerical results, layers of hexahedra are favor-
able to tetrahedra based meshing methods. This fact
leads to the simple idea of providing layered hexahe-
dral elements covering the fracture prior to meshing



Figure 4: The example: A cube with two fractures

Figure 5: Shrinking of one subdomain

the inside with a set of tetrahedration and hexahedra-
tion, see �gure 3b for a 2 d equivalent. As has been
mentioned above, the mesh may be reduced to the
skeleton formed by the layered hexahedral elements
covering the fractures. This will be refered to as 2.75 d
mesh (see �gure 3c for a 2 d equivalent).

3. TECHNIQUE

The realization of this grid generation idea can be tri-
sected: topological analysis, shrinking, and meshing.
In order to illustrate each step a simple 3 d cube in-
cluding two fractures is used, see �gure 4.

At �rst, a topological analysis of the domain is made.
For this purpose the fracture planes as well as each of
the six planes of the bounding cube are described by a
collection of triangles. The whole domain is regarded
as a set of subdomains separated by the fractures, as
each fracture and each boundary plane is regarded as
a set of plane segments separated by the lines of inter-
section with other planes. For the cube including two
fractures the domain is transformed into four subdo-
mains, the two fractures into four fracture plane seg-
ments, and the six boundaries into sixteen boundary

plane segments. Finally, the subdomains are described
by the sum of the bounding plane segments. Any sub-
domain of this example is described by six plane seg-
ments, a hexahedron, while in general it may be any
polyhedron.

In the second step each subdomain is treated sepa-
rately. For each subdomain all related bounding plane
segments are taken and this convex hull 'shrunk' into
the subdomain, shown in �gure 5. As it is assumed
that no more than three planes intersect at one point,
the shrunk hull can be derived by calculating the in-
tersection of parallelly shifted planes. Di�ering from
the prevalent shrinking method (using the centre of
gravity) this procedure provides a constant distance
to the hull planes. This distance should be de�ned
according to the simulation's demands. As a result
of the shrinking, the subdomain is divided into two
parts. The inside of the shrunk hull will be referred
to as 'core' while the remaining space between both
hulls will be called the 'skin'. The core has a similar
shape as the subdomain. In explicit terms, comparing
the analogous boundary plane segments of the origi-
nal and the shrunk hull, the shrunk polygon segments
have the same angles as do those of the original poly-
gon but generally have di�erent lengths.

In the last step, the components of the domain are
meshed. These are each subdomain's skin part, its
core part and the fracture elements.

In turn each skin can be split into three types of par-
titions, see �gure 6:

1. a parallelepiped, thus a hexahedron, at each ver-
tex where three planes meet, consequently omit-
ting the vertices on the edges or on plane seg-
ments

2. a hexahedral prismatoid at each edge that con-
nects two of the vertices described in 1

3. a prismatoid at each plane segment, with a polyg-
onal basis and top and a set of quadrilateral faces
at the sides

The shape of the plane segment prismatoid depends on
the location and particularly on the angle of the frac-
ture intersections. It is meshed as can be seen from
�gure 8 and 7 as follows: at �rst the polygonal bound-
ary of the base plane segment is enriched in nodes and
a 2 d Delaunay triangulation is applied (see 8 a). This
is the starting point for an iterative mesh optimisa-
tion: The total length of the sides of each triangle is
calculated. If now the greatest length exceeds some
given threshold, a node will be inserted dividing the
longest edge of the associated triangle and a remesh-
ing takes place. The �nal iteration (see 8 b) is followed
by a quadrangulation using either (5) or (6), see 8c.



Figure 6: Types of partitions in the skin of each subdomain

Figure 7: Types of 3 d meshing in the skin

(a) (b) (c)

(d) (e) (f)

Figure 8: Procedure of plane segment meshing

(5) is a mere subdivision of each triangle into three
quadrilaterals, while (6) introduces di�erent geomet-
ric coeÆcients in order to join most of the triangles by
pairs and subdivide the remaining triangles into three
quadrilaterals and the resulting pairs of triangles into
four quadrilaterals. The generated quadrilateral mesh
is projected onto the top face of the prismatoid that
has been derived by shrinking (see 8d). This is done
as follows starting from the fact that the base plane
segment and the top plane segment are bound by poly-
gones having the same number of nodes. The nodes
that have been inserted into the base plane segment
during the iteration described above are mapped topo-
logically. Connecting both meshes yields a hexahedral
mesh of the plane segment prismatoid (see 8e). The
resulting hexahedra are subdivided vertically to the
plane segment according to the desired number of lay-
ers of matrix elements on the fractures (see 8f).

The shape of the edge prismatoid mainly depends on

the angle between the two edge originating planes. For
consistency reasons, the nodes created on the edge
during the meshing of the plane prismatoid are in-
cluded as points where the prismatoid bar is sliced
into smaller hexahedra, see �gure 7. These latter ones
are again subdivided according to the desired num-
ber of layers but this time in two directions parallel to
each of the originating planes. Finally, the shape of
the vertex prismatoid is completely de�ned by the an-
gles between the three intersecting planes and is solely
treated by three directional subdivision according to
the desired number of hexahedra layers, see �gure 7.

The last step in the meshing process is the quadrilater-
ation of the fractures themselves as can be seen in �g-
ure 9. The above splitting of the skin parts into edge,
vertex and plane parts is equivalent to a splitting of
the fractures which agrees with both neighboring sub-
domains for each fracture. Consequently, a 2 d version
of the skin meshing process takes place: the edges as



well as the vertex parts result in quadrilaterals that
are further subdivided into layered FEM quadrilat-
erals. The remaining polygonal plane is meshed as
shown in �gures 8a through 8c.

As explained in section 2, one �nal measure should
be taken during the last step in order to enhance the
mesh for fracture network 
ow simulations: The edge
prismatoids and the vertex parallelepipeds su�ering
from a small angle between the intersecting planes are
allocated their own material characteristics and thus
di�erent from that of the subdomain they belong to.
The material properties can be manually adjusted.

The result for the case domain can be seen in �gure 10.
All of the meshing can be reduced to generating the
2 d fracture elements, see (7). This yields a 2.5 d frac-
ture network model that still provides the smoothness
of 2 d elements at the intersection lines. It is widely
applied to 
uid 
ow and mass transport simulations
that neglect the in
uence of the rock matrix. The re-
sult of the meshing can as well be extended to a full
3 d mesh by including the core parts. In that case, for
each subdomain the top faces of all plane prismatoids
must be collected in the state of triangular meshes
which implies the mapping of the nodes of the base
plane segment (8b) onto the top plane segment. This
scatter plot can then be meshed using a 3 d Delaunay
tetrahedration which is followed by the hexahedration,
see �gure 11 and (8).

4. APPLICATIONS AND CONCLUSIONS

Two applications of the algorithm explained will be
illustrated. The �rst is the Sauty case study, see (9).
It is a simple single-fracture domain whose geometry
can be seen in �gure 12. The hatched planes represent
the inlet and outlet. The Sauty case has often been
used to analyse 
uid, tracer and heat 
ow. The sec-
ond application considers the Soultz case explained in
detail above.

4.1 Sauty-Cube

As one can see from �gure 13, the algorithm may be
applied to this single-fracture domain as well. The user
simply has to make sure that those parts of the space
dominated by the processes to be simulated are �lled
with �nite elements. This can be done by extending
the amount of shrinking but is restricted to the size of
the smallest plane segment.

4.2 Soultz-sous-for^ets

The grid generated for the Soultz case can be seen in
�gures 14 and 15. The �rst one displays the 2.75 d
model. In contrast to this, the second one shows the

Figure 9: 2 d meshing of an example fracture

Figure 10: Full 2.75 d meshing of the example cube

Figure 11: Hexahedration of a core of the example
cube



Figure 12: The geometry of the Sauty example

Figure 13: 2.75 d meshing of the Sauty example

Figure 14: 2.75d meshing of the Soultz case

Figure 15: 2.5 d meshing of the Soultz case

2.5 d model. That means that the model is reduced to
2 d �nite elements describing the fracture planes.

4.3 Conclusions

Generally, it is possible to replace a full 3 d model of
a fractured domain by a 2.75 d model. This o�ers an
opportunity to simplify the model while performing
accelerated simulations.

The only pre-requisite is the assumption of a steady
state condition of the processes considered in those ar-
eas of the domain that are not included in the mesh.
Consequently, expertise in adapting the thickness of
the FEM grid layer around the fractures is needed.
This thickness is limited by the smallest plane seg-
ment.

Future work will concentrate on improving the mesh.
This includes a re�nement of the algorithm to allow
non-penetrating fractures for far-�eld simulations and
the additional inclusion of non-planar objects such as
wells.
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